Recombinase-Based Circuits for Environmental Detection, Diagnostics, and Logging

Richard M. Murray
California Institute of Technology

Victoria Hsiao (Amyris) Yutaka Hori (Keio U) Andrey Shur

Outline
I. Event detection and introduction to recombinases
II. Event diagnostics using population-level, stochastic response
III. New directions: event logging, field-programmability
IV. Summary and next steps
Environmental Detection, Diagnostics, and Logging

Approach
- Component technologies: signal detection, memory, species comparison, logic functions
- Event detectors: $A > B$, A followed by B, $A > \text{thresh}$
- Interconnection framework: modular techniques for interconnecting components & detectors

Applications: environmental monitoring, diagnostics for health, circuit debugging, …
Integrases and Excisionases

(Serine) Integrases
• Mechanism by which phage insert DNA into the chromosome of a bacterial host
• $attP$ = phage recognition site
• $attB$ = bacterial recognition site
• Integrase action: insert phage DNA into bacterial chromosome, leaving changing recognition sites

Excisionases
• Reverse reaction requires second phage-coded protein, excisionase

Other recombinases
• Cre recombinase - tyrosine recombinase
• Cre-Lox & Flp-FRT recombinases - insertion, excision, inversion, translocation
• CRISPR/Cas9 - guide RNA-directed excision, insertion

Repurposing Recombinases for Synthetic Biology

Basic trick: put attB/attP on same piece of DNA
- Integrase activity causes DNA between sites to flip
- Excisionase (+ integrases) causes reverse flip

Effects depend on orientation of attachment sides
- Attachment sites pointing toward each other: flip
 \[
 \text{attB-attP} \quad \text{attL-attR} \\
 \begin{array}{ccc}
 a & b & c \\
 \rightarrow \\
 a & \overline{q} & c
 \end{array}
 \]
- Attachment sites in same direction: excise
 \[
 \begin{array}{ccc}
 a & b & c \\
 \rightarrow \\
 a & c
 \end{array}
 \]

Recombinase-Based Circuit Examples

Event Ordering Detection (A then B)

DNA layout

Integrases:
- TP-901
- Bxb1

Reporter
Terminator
Promoter
Reporter

A and B simultaneously

A at t = 0 hr
B at t = 1 hr

Number of cells that switch depends on interval between the two inputs

Steady state response

"B"

A only
B only
No inducer
A then B
B then A

Markov process model

Hsiao, Hori and M., MSB, 2016
Additional Event “Diagnostics”

Q: can we keep track of other things in addition to \(\Delta T \)?

- Have two measurements: \#red, \#green (versus total concentration)
- Idea: GFP population depends on the duration of pulse B => can also measure PWb

Use calibration phase (or models -:) to create lookup table and determine properties of inputs
Event Logging Circuit

Objectives

- Implement a genome ‘recording site’ with a chronological order of inserted DNA fragments
- Utilize plasmids as the source of recording material, and use integrases as the means for DNA insertion

Status

- Built event logger design consisting of four modules: event plasmid (ID sequence), input selector (not shown), controller, logging site
- One event detector circuit tested and working
- Event plasmid selector using Cas9 gRNA to block integrases working in TX-TL

Event logging circuit using DNA integrases

Event Plasmid Integrate Controller Genome site

Spin down & resuspend in fresh media

Proof-of-concept experimental validation

A. Shur (unpublished)
Field Programmable Circuits

Idea: use dCas9 to block integrases
- Use gRNA to guide dCas9 to recognition site => no integration
- Can create different circuits by controlling insertion of elements

Similar to field programmable gate arrays (FPGA) technology in circuits
- Use expression of different integrases to interconnect circuits

Preliminary experiments: it works!
- Cell-free assays show repression of integrates activity

Recombinase-Based Circuits for Environmental Detection, Diagnostics, and Logging

Recombinase-based circuits compliment capabilities of genetic networks

- Ability to reconfigure DNA in cells can be used for logic and memory (detection logic)
- Stochastic response across populations of cells provides diagnostic capability
- Use DNA as a “recording tape” (logging) [see also recent paper by Shipman et al.]

Other uses to be explored

- Integrases as a means of “programming” circuits (FPGA-style)
- Use integrase/excisionase pairing as feedback mechanism (see Folliard poster)

Some open problems

- Compilers: specs → (recombinase) circuits
- Leaks are still a problem (leaky integrate expression => noisy flipping)
- Better exploiting stochastic dynamics
Some Challenges and Research Directions (BFS)

Better understanding of uncertainty
- How do we capture observed behavior using structured models for (dynamic) uncertainty

Stochastic specifications and design tools
- How do we describe stochastic behavior in a systematic and useful way?
- How do we design stochastic behavior?
- What are the right design “knobs”?

Higher level design abstractions
- What are the right “device-level” design abstractions (and corresponding diagrams)?

Redundant design strategies
- Start implementing non-minimal designs
- Analogy: stochastic memory storage

Scaling up: components → devices → systems
- How can we use in vitro “breadboarding” to design and implement complex systems