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Abstract— Networked systems are characterised by their
scale and structure. In particular, biochemical reaction net-
works involve complicated interconnections of chemical reaction
pathways and cycles, occurring on a number of different
time and space scales even within a cell. This paper seeks to
formalise a method of layering the dynamics of a biochemical
network by decomposing its stoichiometric matrix into a sum
of stoichiometric matrices, each of which we identify with
a layer. We derive a condition to test when a given layer
directly communicates with another. We also examine singular
perturbation by considering decomposition into fast and slow
layers, characterising the approximate dynamics through the
quasi-steady state approximation in terms of a perturbation of
the dynamics of the slow layer.

I. INTRODUCTION

Networked systems are characterised by their scale and
structure [3]. They are structured, but also highly com-
plicated, operating on many time and space scales and
with many interacting functional components. Complexity
provides robustness to most environments, although it also
allows for catastrophic failures in unexpected conditions [1],
[29]. In order to understand such networks, the idea of
layering is a useful abstraction. By decomposing the system
into layers, then the problem of understanding the system
decomposes into understanding the functionality of its layers,
and the protocols with which these communicate [10], [11].

Biological systems, such as biochemical networks, are
complicated systems currently under extensive research.
These exist on many scales with complicated interconnec-
tions and feedback loops. A layering approach is important
for understanding such complexity. For example, in [12],
[22], the authors decompose a model of the heat shock
response (hsr) within a single E. coli cell into modules of
chemical species with various functions and identify layers
(termed “flux modules”) of interconnecting feedback and
feedforward loops between these functional modules. Other
biochemical models, such as those for glycolysis [6] and the
lac operon [31] are similarly layered.

However, when considering the cell as a whole, each
biochemical model is itself part of a much larger cellular
architecture. For simplicity it is analysed (and layered)
independently of the other cellular functions, but it is also
important to appreciate that any model of a biochemical
pathway or function is itself a single layer within the complex
interconnection of other layers which make up the cell. A key
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challenge for systems biology is to understand how these
layered models are integrated.

There have been a number of different conceptual ap-
proaches to layering. In terms of mathematical formulations,
a key concept is that of a multislice network [24]. These are
made up of a collection of network slices, where inter-slice
connections between corresponding nodes connect the slices
together. This approach of overlaying networks, anchored by
inter-slice connections, has a parallel in the approaches in
[13] and [15] to modelling layered networks, with applica-
tions to overlaid rail and air transport systems.

Layering has also been approached from the perspective
of optimisation decomposition [7]. If a network is modelled
as solving an optimisation problem, layering corresponds
to the partition of the problem into sub-problems at lower
layers, coordinated by a master problem at a higher layer.
Such coordination is seen in the hierarchical layering of
networks of communicating autonomous systems [28], [30],
[32]. Here a large communication network is partitioned into
sub-networks, each of which coordinate a subset of agents,
and which also communicate with one another (through one
leader, or some other low-rank information) via a higher-
layer communication network.

In addition to these formulations of layers in complex
networks, models of biochemical reaction networks have
had similar approaches to layered decompositions, using the
same vocabulary [17], [5], [4]. These approaches give a
specific definition of a layer in a biochemical network such
that mass flow along reactions can only occur within it,
but not between layers. This results in a natural layering:
transcription and translation do not consume DNA or mRNA,
so there is no mass flow from these layers to metabolic and
protein layers. Similarly, gene promoters are not consumed
when promoting a certain gene’s transcription, so remain in
another layer.

In this paper we will define layers in a biochemical
network without assuming a given structure of mass flow.
Time-scale separation will be used as a motivating example,
and we will examine how singular perturbation can be
approached through layering.

NOTATION
In describing biochemical networks of n chemical species, Xi

will denote the ith species for i = 1, . . . ,n and xi will denote the
concentration of Xi. The concentration vector is x = (x1, . . . ,xn)

T

where T denotes transpose. When layering, xk will denote the state
of the kth layer, and xk

i the ith component of the kth layer. Similarly,
superscript natural numbers k (such as f k, Sk and vk and so on) will
refer to the kth layer. In summary: subscripts refer to components,
and superscripts to layers. We will write “Lk” as shorthand for
“layer k”. Approximated system states will be denoted by x̃.
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We will use ż = dz/dt for differentiation w.r.t. time t. For a
function ϕ : Rp → Rq we will denote the partial derivatives of
ϕ(x) by ∂ϕi/∂xk, and denote the Jacobian matrix Jϕ = ∂ϕ/∂x =
(∂ϕi/∂xk)ik interchangeably.

For S ∈Rn×m we will use ker(S) = {v ∈ Rm | Sv = 0} to refer to
the kernel of S, and im(S) = {Sv | v ∈ Rm} for the image of S. For
any subspace V of Rn, we denote the perpendicular complement
V⊥ =

{
w ∈ Rn | wT v = 0 ∀v ∈V

}
.

II. DECOMPOSITION INTO LAYERS
A. Biochemical network representation

Consider a biochemical reaction network which can be
described using a stoichiometric matrix S and flux vector v(x)
[26]. To illustrate these structures, consider a single reaction
transforming one species to another: X1

k→X2. The rate of this
reaction, using the law of mass action, is proportional to the
concentration x1 of species X1 so that the single component
in the flux vector is v(x) = kx1. In this reaction, for every
one molecule of species X1 that is consumed, one molecule
of X2 is produced. Thus the stoichiometry is the matrix with
a single column S = [−1,1]T . Writing x = [x1,x2]

T , the ODE
system describing this reaction network is

ẋ1 =−kx1

ẋ2 = kx1

or ẋ= Sv(x). This representation applies to any network made
up of n species taking part in m reactions.

Let x(t)∈Rn be the vector of concentrations xi of n species
Xi. Consider reaction j, which can be written

∑
i

αi jXi → ∑
i

βi jXi

for integer-valued αi j and βi j. If α = (αi j)i j and β = (βi j)i j,
then the stoichiometric matrix S = β −α . In the example
above, α = [1,0]T and β = [0,1]T , giving S = [−1,1]T . The
jth column of S therefore describes the net result of reaction
j by totalling how many molecules of each species are
consumed or produced by the reaction.

Finally we construct v(x), where v(x) j is the rate of the
jth reaction. By the law of mass action, v(x) j is proportional
to ∏(xi)

αi . However, the reaction rate may also depend on
the concentration of some species not involved in the mass
flow of the reaction itself, for instance through catalysis by
enzymes, or competitive exclusion by other proteins. For an
example of this, see reaction 4 in Figure 1.

In summary: the time evolution of the biochemical system
is modelled by the system of ODEs

ẋ(t) = Sv(x(t)) (1)

where initial conditions x(0) = x0 are also specified.

B. Layering a system

We will define a decomposition of a general biochemical
network with dynamics (1) into L layers by decomposing the
stoichiometry S into a sum of matrices S= S1+ · · ·+SL. With
each layer i= 1, . . . ,L we associate a state vector xi ∈Rn and
define its dynamics as

ẋi(t) = Siv(x(t)) (2)

S =

−2 2 0 0
1 −1 0 0
0 0 1 −1

 v(x) =


k1(x1)

2

k2x2
k3

k4x2x3


Fig. 1: Four reactions with three species. Species X3 is created
and degrades from the environment, while species X1 and X2 are
reversibly formed from one another. Reaction 1 takes two molecules
of X1 into one of X2, giving the first column of S, and so on. Species
X2 catalyses reaction 4 without any mass flow. Note that S is block
diagonal. The system ODE is ẋ = Sv(x).

with initial conditions xi(0) = 0. Putting x(t) = x0 +∑i xi(t),
where x0 are the system initial conditions, recovers the
dynamics in (1). The problem in this case is therefore how
to decompose S into a meaningful matrix sum, so that
the resulting layers enable us to understand the underlying
structure of the network.

a) Layering by species: We may define layers by
partitioning the chemical species into groups. If we partition
the components of x =

[
x̂1 · · · x̂L

]T then the rows of S
will split conformally into S =

[
Σ̂1 . . . Σ̂L

]T . We can then
define each layer’s stoichiometry by Si =

[
0 Σ̂i 0

]T and
put this Si into equation (2). It is clear that the vectors ẋi are
then in orthogonal subspaces of Rn, and that the dynamics
of each subset of species in the partition of x is associated
with a unique layer. Therefore (2) reduces to

˙̂xi = Σ̂iv(x)

for i = 1, . . . ,L in this case.
b) Layering by fluxes: Alternatively, we may define

layers by partitioning the reactions into groups. If we par-
tition the components of v(x) =

[
v1(x), . . . ,vL(x)

]T for vi(x)
taking values in Rmi

, then we can conformally group together
the columns of S = [Σ1, . . . ,ΣL]. We can then define each
layer’s stoichiometry by Si = [0,Σi,0] and put this Si into
(2). The fluxes are partitioned by this construction of Si, so
that the dynamics for each layer can be written

ẋi = Siv(x) = Σivi(x). (3)

Remark 1: Our decomposition method has some similar-
ity to the methods of expansion [18], [19], [33], reviewed
in [2]. Both approaches increase the state space dimension
of the system to create interconnected subsystems. However,
the expansion methods use the principle of system inclusion
to go between the expanded and original system, forcing
overlapping variables to take equal values, while we simply
sum the state vectors to retrieve the original dynamics. This
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formulation also generalises layers from the requirement in
[20], [5] that the stoichiometric matrix is block diagonal, to
allow retroactive coupling [8] between layers (see Section
IV-B).

III. LAYER CONNECTION TOPOLOGY

Whether we choose {Si} to layer S by flux or by species,
we can write the system dynamics as

ẋi(t) = Siv(x(t)), (4)

x(t) = x0 +
L

∑
i=1

xi(t) (5)

Each layer’s dynamics (4) may depend also on the state of
any other layer. The aim of this section is to make clear the
conditions under which some layers have no influence on
others, defining an interconnection topology.

To work out whether a given layer Lk talks to Li we can
rewrite (4) slightly differently to give

ẋi(t) = Siv(xk(t)+ξ k(t))

where ξ k(t) = x(t)−xk(t). If, for arbitrary ξ ∈Rn, we have

Siv(xk(t)+ξ ) = Siv(ξ ) (6)

for all allowed values of xk, then it is clear that Lk does not
talk to Li. To test (6) we need to clarify which values of xk are
allowed. As ẋk is in the image space of Sk, and xk(0) = 0, we
know that xk(t) ∈ im

(
Sk
)
. Thus a more precise formulation

of condition (6) is

v(xk +ξ )− v(ξ ) ∈ ker
(
Si) ∀xk ∈ im

(
Sk
)

(7)

for any ξ ∈ Rn. The result below expresses this condition
in terms of the Jacobian of v and the two stoichiometric
matrices Si and Sk.

Lemma 1: For each i let U i ∈ Rn×ri
be any matrix with

columns which form a basis of the column space ColSp(Si),
which has dimension ri. Let Ci ∈Rmi×ri

be any matrix with
columns which form a basis of the row space RowSp(Si)
(which is also of dimension ri). Condition (7) is equivalent
to

(Ci)T (Jv)Uk = 0 (8)

for the Jacobian Jv(z) of v(z), for all possible values of z ∈
Rn.

Proof: By the definition of Uk, any xk ∈ im(Sk) can be
uniquely described by a vector λ ∈ Rrk

through the relation
xk =Ukλ . Then (7) is true for all xk ∈ im(Sk) if and only if
it is true for all λ ∈ Rrk

.
Since, from the definition of Ci, its columns form a basis

for the space RowSp(Si) = (ker(Si))⊥, any vector y ∈ ker(Si)
if and only if (Ci)T y = 0. Thus we can re-write (7) by taking
y = v(xk + ξ )− v(ξ ). Rewriting xk = Ukλ , we therefore
require that (Ci)T (v(Ukλ +ξ )− v(ξ )) = 0.

Suppose we construct the function

θik(ξ ,λ ) = (Ci)T
(

v
(

ξ +Ukλ
)
− v(ξ )

)

(a) Full communication between layers

(b) Inferred communication structure between layers

Fig. 2: Suppose a system has three layers, with initial conditions
feeding into all three. Figure 2a shows the general interconnection
between any three layers. Figure 2b is an example where the each
layer’s dynamics have been shown to depend on only a subset of
other layers. The resulting topology means that the layers can be
analysed in sequence from 1 to 3, with no feedback loops.

for ξ ∈Rn and λ ∈Rrk
. Then we can combine the two facts

above to deduce that (7) is equivalent to requiring θik(ξ ,λ )=
0 for all λ ∈ Rrk

.
If we can prove that θik(ξ ,λ ) is constant as λ varies, then

since θik(ξ ,0) = 0 the result will follow. Differentiating θik
with respect to λ means that we require

∂θik

∂λ
= (Ci)T ∂

∂λ
v(ξ +Ukλ ) = 0

for all values of λ and ξ . Using the chain rule,

(Ci)T ∂
∂λ

v(ξ +Ukλ ) = (Ci)T (Jv)Uk

and (8) follows.
Once we have determined the interconnection topology we

can analyse the system as a whole by treating layers and their
interconnections separately. This is particularly true if we
have a hierarchical layering, such as in Figure 2. If there are
no (directed) cycles of communication then the layers can
be analysed in “order”: there is an indexing of the layers
such that the inputs to any layer Li will depend only on
the outputs of layers L j with j < i. Thus any perturbations
will propagate through this sequence in cascade, without any
complicating feedback loops.

IV. TIME-SCALE SEPARATION

Singular perturbation is a standard analytical tool with
which large, complicated systems are simplified [14], [21]. It
is very commonly employed on biochemical network models
to enable simulation or analytical insight [25]. Standard
singular perturbation, through the separation of two time
scales, classifies variables (i.e. species) as either fast or slow
by the dynamics

ẋ = f (x,y)

ε ẏ = g(x,y)
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where f and g are of the same order ∼ 1 and the parameter
ε ≪ 1 is small. Then y is fast, since ẏ ∼ 1/ε is large in
comparison to ẋ. However, as noted in [23], in biochemical
networks it is not necessarily species which are fast or slow,
but reactions: each species can take part in both fast and slow
reactions. Applying standard singular perturbation techniques
often requires a transformation of the state space in order to
separate out fast and slow variables.

In Section II we discussed two decompositions of ẋ =
Sv(x) into layers, either by flux or by species, but not how to
choose the decomposition. Whether we have fast reactions
or fast variables, time-scale separation presents itself as a
natural decomposition of the network. If fast reactions, we
can partition the flux vector (and therefore the columns of S)
into groups with a common scale; if fast species, we simply
partition the rows of S accordingly.

Since in general it is reactions that are fast or slow,
to formulate the system in terms of fast and slow species
requires a transformation of the state space. In a biochemical
setting, the transformed variables may then be physically
meaningless quantities. We will instead consider the singular
perturbation of fast and slow fluxes, which does not require
any transformations.

A. Two time scales

Suppose we have a biochemical network whose flux vector
v can be partitioned into

v(x) =
[

v1(x)
v2(x)/ε

]
where vi ∼ 1 are both of the same order. Since vi are both
functions of x, we will assume that the system has been
non-dimensionalised so that each component xk is of the
same order too. If we group the columns of S = [Σ1,Σ2]
conformally with the partition of v, the system dynamics
can be written

ẋ = Sv(x) = Σ1v1(x)+
1
ε

Σ2v2(x). (9)

Standard singular perturbation techniques would attempt to
transform the vector x to determine fast and slow variables.
We will instead create two layers: one fast, and one slow.

As we are layering by flux, we can apply (3) to the two-
time-scale decomposition (9) to give

ẋ1 = S1v(x0 + x1 + x2) = Σ1v1(x0 + x1 + x2) (10)

ε ẋ2 = εS2v(x0 + x1 + x2) = Σ2v2(x0 + x1 + x2) (11)

where x0 is the initial condition, and xi(0) = 0. Standard
singular perturbation requires us to partition x ∈Rn, into two
orthogonal subspaces with total dimension n. However, (10)–
(11) gives fast and slow variables, where instead each xi ∈
Rn. Nevertheless, since x = x1+x2, we lose no meaning with
the new variables: instead, xi

k is simply the amount of the
species xk in layer i.

Remark 2: Note that, in the remainder of this section, we
will be working with Σi ∈ Rn×mi

as opposed to the general
layered stoichiometry Si ∈ Rn×m.

As with standard singular perturbation, the system (10)–
(11) with state x can be approximated by letting ε → 0,
known as the quasi-steady state approximation (QSSA), to
give an approximate layered state x̃ = x0+ x̃1+ x̃2. This gives
Σ2v2(x0 + x̃1 + x̃2) = 0 or, equivalently, v2(x0 + x̃1 + x̃2) ∈
ker(Σ2). This, together with requiring x̃2 ∈ im(Σ2), means
that the output x̃2 from L2, given inputs x0 and x̃1, belongs
to the set

x̃2 ∈
{

z ∈ im
(
Σ2) | v2 (x0 + x̃1 + z

)
∈ ker

(
Σ2)} . (12)

We want to show that (12) defines a function ϕ mapping
the input x̃1 + x0 to the unique output x̃2 of the QSSA
approximation of L2. The result below shows that, as ε → 0,
the (local) existence of x̃2 = ϕ(x1 + x0) depends on the
Jacobian Jv2, through the application of the Implicit Function
Theorem.

Lemma 2: Let U ∈ Rn×r2
be a matrix, the columns of

which form a basis for ColSp(Σ2) = im(Σ2). Also let the
matrix C ∈ Rm2×r2

have columns which form a basis for
RowSp(Σ2) = (ker(Σ2))⊥. Suppose we know a point x = c
such that Σ2v2(c) = 0. Assume that the Jacobian Jv2(c)
evaluated at c is such that

CT Jv2(c)U ∈ Rr2×r2

is non-singular.
Then for each ξ ⋆ ∈ c+ im(Σ2) there exists an open set A

containing ξ ⋆, and a unique differentiable function ϕ : A →
im(Σ2) such that x̃2 = ϕ(x̃1 +x0) is on the manifold defined
by (12) for all x̃1 + x0 ∈ A.

Proof: Denoting ξ = x0 + x̃1 as the external input into
L2, we want to show that there exists a function x̃2 = ϕ(ξ )
defined by the manifold (12). The set in (12) is a subset of
im(Σ2), which has dimension r2 = rank(Σ2). The columns
of U ∈ Rn×r2

form a basis for im(Σ2). Then we can write
x̃2 =Uλ for a unique λ ∈ Rr2

.
The columns of C ∈ Rm2×r2

form a basis for (ker(Σ2))⊥.
Then the condition v2 ∈ ker

(
Σ2

)
is equivalent to CT v2 = 0.

We want to prove the existence of a function ϕ such that
x̃2 = ϕ(ξ ) or, equivalently since x̃2 = Uλ , we want to find
λ = Λ(ξ ). Define the function θ : Rn ×Rr2 →Rr2

such that

θ(ξ ,λ ) =CT v2(ξ +Uλ ). (13)

where ξ = x0 + x1 is the independent input. Requiring that
v2(ξ + x̃2)∈ ker

(
Σ2

)
is equivalent to requiring that θ(ξ ,λ )=

CT v2(ξ +Uλ ) = 0. We will use the Implicit Function The-
orem to show that this relation admits λ = Λ(ξ ). Since
CT v2(c) = 0 by the assumption on c, then for any λ ⋆ ∈ Rr2

we can put ξ ⋆ = c−Uλ ⋆ to fix θ(ξ ⋆,λ ⋆) = 0.
Then if ∂θ

∂λ evaluated at (ξ ⋆,λ ⋆) is invertible there exists
an open set A(ξ ⋆) ⊂ Rn containing (and dependent on) ξ ⋆

and open B(λ ⋆)⊂Rr2
containing (and dependent on) λ ⋆, and

unique Λ : A → B, such that θ(ξ ,Λ(ξ )) = 0, and therefore
x̃2 =UΛ(ξ ) is on the manifold (12) for all ξ ∈ A.

We now need to determine when ∂θ
∂λ evaluated at (ξ ⋆,λ ⋆)

is invertible. This matrix, by application of the chain rule, is
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given by

∂θ
∂λ

=CT ∂
∂λ

v2(ξ +Uλ ) =CT (Jv2)U (14)

for the Jacobian Jv2 evaluated at ξ ⋆ +Uλ ⋆ = c. By as-
sumption, this matrix is invertible, and holds for any ξ ⋆ =
c−Uλ ⋆ ∈ c+ im(Σ2).

Using this lemma we can show that when x2, under the
QSSA, can be approximated by a function x̃2 = ϕ(x0 + x̃1)
we have

˙̃x1 = Σ1v1(x0 + x̃1 +ϕ(x0 + x̃1))

now autonomous. Then x̃ = x0 + x̃1 + ϕ(x0 + x̃1) forms the
approximated trajectory. A quantification of the error of the
approximation, for example

∫ ∞
0 (x− x̃)2 dt, can be calculated

using Sum of Squares methods as discussed by our previous
work [27].

The lemma above only proves existence. The following
corollary is used to deduce information about the derivative
of the implicit function.

Corollary 1: Under the QSSA, when x̃2 = ϕ(x0 + x̃1) =
ϕ(ξ ), the Jacobian of x̃2 when differentiated by ξ is given
by

∂ x̃2

∂ξ
=−U

(
CT (Jv2)U

)−1
CT (Jv2) . (15)

Proof: A corollary of the Implicit Function Theorem
is that, if θ(ξ ,λ ) = 0 gives λ = Λ(ξ ), then

∂λ
∂ξ

=−
(

∂θ
∂λ

)−1 ∂θ
∂ξ

.

Since x̃2 =Uλ we have

∂ x̃2

∂ξ
=U

∂λ
∂ξ

and noting (14) and, similarly deriving ∂θ
∂ξ = CT (Jv2), we

find (15).
Remark 3: Note that the Jacobian (15) is invariant to the

basis chosen to construct both U and C.

B. Layers and retroactivity

We can approach the concept of retroactivity [8], [9],
[16] using the framework of layering. Suppose we have two
isolated systems ẋi = f i(xi). If the first system is upstream
of the second, and the two are connected, the principle of
retroactivity is that the interconnection of the systems may
cause the upstream system dynamics to change from the
isolated case. The example in [8] considers the upstream
system with isolated dynamics

Ẋ = k−δX

and the interconnected dynamics

Ẋ = k−δX +
δ
ε

C− δ
kdε

(pTOT −C)X

Ċ =−δ
ε

C+
δ

kdε
(pTOT −C)X

for small ε ≪ 1. Clearly, this system can be partitioned into
two layers such that

ẋ1 =

[
1 −1
0 0

][
k

δx1

]
(16)

ε ẋ2 =

[
1 −1
−1 1

][
δx2

δ
kd
(pTOT − x2)x1

]
, (17)

where x1 = [X ] and x2 = [C] are the species concentrations.
The authors then take the limit as ε → 0 to quantify the effect
of L2 on L1: the “retroactivity to the output”.

More generally, suppose we have an isolated slow up-
stream system ż1 = f 1(z1), a much faster isolated fast down-
stream system ż2 = f 2(z2)/ε , and the interconnected system
ẋ = f 1(x)+ f 2(x)/ε with f i(x) = Σivi(x). Decomposing the
full system gives

ẋ1 = Σ1v1(x0 + x1 + x2) (18)

ε ẋ2 = Σ2v2(x0 + x1 + x2) (19)

and, in the limit as ε → 0, we can use the arguments of
Section IV-A to find x̃2 = ϕ(x̃1) using the QSSA. Since x̃ =
x̃1 + x̃2 we have that

˙̃x = ˙̃x1 + ˙̃x2 =

(
I +

∂ϕ
∂x1

)
Σ1v1(x̃) (20)

for the identity matrix I and Jacobian ∂ϕ
∂x1 . Thus, through

the Jacobian, we can quantify the retroactivity from the fast
layer to the slower layer.

Corollary 1 allows us to write the retroactivity term ∂ϕ
∂x1

in (20) as a function of three quantities: U , whose columns
are a basis for the column space of Σ2; C, whose columns
form a basis for the row space of Σ2); and Jv2, the Jacobian
of the fast dynamics v2. The results are summarised in the
following theorem.

Theorem 1: Consider a biochemical network with n
species and m reactions with time-scale separation such that

ẋ =
[
Σ1 Σ2

][ v1(x)
v2(x)/ε

]
.

Choose a matrix U ∈Rn×r2
whose columns form a basis for

the column space of Σ2, and similarly choose C ∈ Rm2×r2

whose columns form a basis for the row space of Σ2. Letting
Jv2 represent the Jacobian of v2, if CT (Jv2(x̃))U is invertible
then the dynamics of the system under the quasi-steady state
approximation as ε → 0 are

˙̃x = (I +M(x̃))Σ1v1(x̃) (21)

where

M(x̃) =−U
(
CT (Jv2(x̃))U

)−1
CT (Jv2(x̃))

is the derivative of x̃2 with respect to x̃1.
Proof: By the results in Section IV-A, we can write

x̃2 = ϕ(ξ ) for ξ = x0 + x̃1 and we know that ∂ x̃2/∂ x̃1 =
∂ x̃2/∂ξ = M. Equation (20) completes the proof.

Remark 4: In the case of two time scales, by calculating
M we can directly analyse the singularly perturbed dynamics
under the QSSA without needing to transform variables, and
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without needing to explicitly determine the output of the fast
layer x̃2 given its input x0 + x̃1.

Remark 5: When v2 is linear, M is constant. When v2 is
nonlinear, M becomes a (potentially nonlinear) function of
x̃. Thus, in this case, the retroactivity to the slow dynamics
depends not just on parameters but also the state. For
example, if the region of state space for which M(x) is
very small is also in some sense invariant under the slow
dynamics, then this is a low-retroactivity operating region.

Applying this result to the example (16)-(17) gives

I+M(x) =
1

pTOT + kd + x1 − x2

[
x1 + kd x1 + kd

−x2 + pTOT −x2 + pTOT

]
as the state-dependent perturbation to the dynamics of the
slow system which results in the approximated system.

V. CONCLUDING REMARKS

We have presented a framework for decomposing networks
into layers. It is applied to biochemical networks, where
layers arise through partitioning either the rows or columns
of the stoichiometric matrix. We derived a condition to
determine how they are interconnected. In the case where
layers are formed naturally by time-scale separation, we
used this framework to carry out singular perturbation under
the quasi-steady state assumption. We derived the system
dynamics under the QSSA as a perturbation of the slow
dynamics, interpreted as the retroactive effect of downstream
fast dynamics on upstream slow dynamics.

The perturbation was found in terms of the row and
column spaces of the fast stoichiometry, and the Jacobian
of the fast dynamics. Through this result, we expressed the
approximated system without transforming the state space,
or to determine the output of the fast layer as an explicit
function of the slower layer’s state. Using (20) for the
retroactive perturbation, we have also quantified retroactivity
in time-scale separated systems.

Future work will apply these tools to other network
dynamics classes (e.g. to network consensus problems) and
develop techniques for the control and synthesis of layered
biochemical networks by investigating the interconnected
dynamics of layers on a common timescale.
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[33] A. I. Zečević and D. D. Šiljak. Control of Complex Systems. Springer,
2010.

4549


